
CSCI 210: Computer Architecture

Lecture 28: Pipelining

Stephen Checkoway

Slides from Cynthia Taylor

CS History: MIPS

• “Microprocessor without Interlocked
Pipelined Stages”

• Started as a class project in graduate class
taught by John Hennessy at Stanford in
1981

• In 1984 Hennessy formed MIPS Computer
Systems to sell it commercially

• Emphasized short clock cycle and use of
pipelining

Instruction Critical Paths

Instr. I Mem Reg Rd ALU Op D Mem Reg Wr Total

R-
type

load

store

beq

jump

• What is the clock cycle time assuming negligible delays for
muxes, control unit, sign extend, PC access, shift left 2, wires,
setup and hold times except:

• Instruction and Data Memory (200 ps)

• ALU and adders (200 ps)

• Register File access (reads or writes) (100 ps)

Times are just examples and not representative of real-world latencies

Performance Issues

• Longest delay determines clock period

– Critical path: load instruction

– Instruction memory → register file → ALU → data memory →
register file

• Not feasible to vary period for different instructions

• Violates design principle

– Making the common case fast

• We will improve performance by pipelining

Pipelining Analogy
• Pipelined laundry: overlapping execution

– Parallelism improves performance

MIPS Pipeline

• Five stages, one step per stage
1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

• Move from one instruction per clock cycle, to one stage per
clock cycle (with shorter cycle period!)

Pipelined Datapath

IF: Instruction Fetch ID: Instruction Decode EX: Execute MEM: Memory WB: Writeback

Execution in a Pipelined Datapath

IM Reg

A
LU DM Reg

IM Reg

A
LU DM Reg

IM Reg
A

LU DM Reg

IM Reg

A
LU DM Reg

IM Reg

A
LU DM Reglw

add

sll

lw

addi

IF ID EX MEM WB

IF ID EX MEM WB

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)If we pipeline by running different stages at the same time (i.e., running instruction fetch for the
next instruction during the Reg stage of the first instruction), running two instructions will take us

A. 900 ps

B. 1000 ps

C. 1200 ps

D. 1600 ps

• Assume time for stages is

– 100ps for register read or write

– 200ps for other stages

– HINT: How long will the clock cycle be in
the pipelined version?

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

In our pipelined datapath, latency (µs per instruction)
_________, but throughput (instructions per second)

A. Improves, gets worse

B. Improves, stays the same

C. Gets worse, improves

D. Stays the same, improves

E. None of the above

Maximum Pipeline Speedup

• If all stages are balanced

– i.e., all take the same time

Time between instructionspipelined = Time between instructionsnonpipelined

 Number of stages

• Speedup = timepipelined / timenonpipelined = number of stages

• If not balanced, speedup is less

• Speedup due to increased throughput

– Latency (time for each instruction) does not decrease

Pipelining and ISA Design

• MIPS ISA designed for
pipelining
– All instructions are 32-bits

• Easier to fetch in one cycle
• c.f. x86: 1- to 15-byte instructions

– Few and regular instruction
formats
• Can decode and read registers in

one cycle

– Load/store addressing
• Can calculate address in 3rd stage

(EX), access memory in 4th stage
(MEM)

IM Reg

A
LU DM Reg

IM Reg

A
LU DM

IM Reg

A
LU DM Reg

IM Reg

A
LU DM Reg

IM Reg

A
LU DM Regsub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

What just happened here which is problematic (BEST ANSWER)?
A. The register file is trying to read and write the same register
B. The ALU and data memory are both active in the same cycle
C. A value is used before it is produced
D. Both A and B
E. Both A and C

Hazards

Situations that prevent starting the next instruction in the next
cycle

• Structure hazards
– A required resource is busy

• Data hazard
– Need to wait for previous instruction to complete its data read/write

• Control hazard
– Deciding on control action depends on previous instruction

Structure Hazards

• Conflict for use of a resource

• In MIPS pipeline with a single memory

– Load/store requires data access

– Instruction fetch would have to stall for that cycle

• Would cause a pipeline “bubble”

• Hence, pipelined datapaths require separate instruction/data
memories (or “caches” which we’ll talk about later in great
detail)

Data Hazards
• When a result is needed in the pipeline before

it is available, a “data hazard” occurs.

IM Reg

A
LU DM Reg

IM Reg

A
LU DM

IM Reg

A
LU DM Reg

IM Reg

A
LU DM Reg

IM Reg

A
LU DM Regsub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

R2 Available

R2 Needed

We could solve data hazards by

A. Reordering instructions

B. Not running the second instruction until the data is ready

C. Sending the calculated value straight from the ALU to the next
instruction, skipping the registers

D. More than one of the above

Forwarding (a.k.a. Bypassing)

• Use result when it is computed

– Don’t wait for it to be stored in a register

– Requires extra connections in the datapath

Would forwarding work if our instructions were
lw $s0, 20($1)

sub $t2, $s0, $t3

A. Yes

B. No

C. Depends on the value loaded

IM Reg

A
LU DM Reg

IM Reg

A
LU DM Reg

Load-Use Data Hazard

• Can’t always avoid stalls by forwarding

– If value not computed when needed

– Can’t forward backward in time!

Code Scheduling to Avoid Stalls

• Reorder code to avoid use of load result in the next instruction

• Assembly code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

Questions on Data Hazards?

• Basic problem: Need a value before it’s written to a register

• Solutions: Forwarding, stalling

Control Hazards

• Branch determines flow of control

– Fetching next instruction depends on branch outcome

– Pipeline can’t always fetch correct instruction

• Still working on ID stage of branch

• In MIPS pipeline

– Need to compare registers and compute target early in the pipeline

– Add hardware to do it in ID stage

To solve control hazards, we could

A. Rearrange instructions.

B. Guess what the branch will do.

C. Just stall until we know the branch outcome.

D. More than one of the above.

Stall on Branch

Wait until branch outcome determined before fetching next
instruction

Problem

• Branches are about 15% of instructions

• If all instructions except branches have a CPI of 1, and branches
have a CPI of 2, we have an average CPI of 1.15

• Even worse if we can’t resolve the branch until later

Branch Prediction

• Longer pipelines can’t readily determine branch outcome early

– Stall penalty becomes unacceptable

• Predict outcome of branch

– If prediction is wrong, then “flush” the pipeline

• In MIPS pipeline

– Can predict branches not taken

– Fetch instruction after branch, with no delay

More-Realistic Branch Prediction

• Static branch prediction

– Based on typical branch behavior

– Example: loop and if-statement branches

• Predict backward branches taken

• Predict forward branches not taken

• Dynamic branch prediction

– Hardware measures actual branch behavior

• e.g., record recent history of each branch

– Assume future behavior will continue the trend

• When wrong, stall while re-fetching, and update history

Questions on Control Hazards?

Single Cycle Datapath

Pipeline registers
• Need registers between stages

– To hold information produced in previous cycle

IF for lw $t0, 4($t1)

$t0 is register 8, $t1 is register 9
$t0 holds 5
$t1 holds 0x4810CAB0
0x4810CAB0 holds 12

ID for lw $t0, 4($t1)

$t0 is register 8, $t1 is register 9
$t0 holds 5
$t1 holds 0x4810CAB0
0x4810CAB0 holds 12

The register file will output data from both
read registers, but load will only use one of

them. We should

A. Save both of them in ID/EX

B. Only save the one we will use in ID/EX

C. Do something else

EX for lw $t0, 4($t1)

$t0 is register 8, $t1 is register 9
$t0 holds 5
$t1 holds 0x4810CAB0
0x4810CAB0 holds 12

MEM for lw $t0, 4($t1)

$t0 is register 8, $t1 is register 9
$t0 holds 5
$t1 holds 0x4810CAB0
0x4810CAB0 holds 12

When we do WB for load

A. Everything will be fine

B. The data to write to the register
will be wrong

C. The register number to write to
will be wrong

WB for Load

Wrong
register
number

Corrected Datapath for Load

Reading

• Next lecture: Pipelined Datapath

– Section 5.7–5.7.10

	Slide 1: CSCI 210: Computer Architecture Lecture 28: Pipelining
	Slide 3: CS History: MIPS
	Slide 4: Instruction Critical Paths
	Slide 5: Performance Issues
	Slide 6: Pipelining Analogy
	Slide 8: MIPS Pipeline
	Slide 9: Pipelined Datapath
	Slide 10: Execution in a Pipelined Datapath
	Slide 11: Pipeline Performance
	Slide 12: Pipeline Performance
	Slide 13: In our pipelined datapath, latency (µs per instruction) _________, but throughput (instructions per second) _________
	Slide 14: Maximum Pipeline Speedup
	Slide 15: Pipelining and ISA Design
	Slide 16
	Slide 17: Hazards
	Slide 18: Structure Hazards
	Slide 19: Data Hazards
	Slide 20: We could solve data hazards by
	Slide 21: Forwarding (a.k.a. Bypassing)
	Slide 22: Would forwarding work if our instructions were lw $s0, 20($1) sub $t2, $s0, $t3
	Slide 23: Load-Use Data Hazard
	Slide 24: Code Scheduling to Avoid Stalls
	Slide 25: Questions on Data Hazards?
	Slide 26: Control Hazards
	Slide 27: To solve control hazards, we could
	Slide 28: Stall on Branch
	Slide 29: Problem
	Slide 30: Branch Prediction
	Slide 31: More-Realistic Branch Prediction
	Slide 32: Questions on Control Hazards?
	Slide 33: Single Cycle Datapath
	Slide 34: Pipeline registers
	Slide 35: IF for lw $t0, 4($t1)
	Slide 36: ID for lw $t0, 4($t1)
	Slide 37: The register file will output data from both read registers, but load will only use one of them. We should
	Slide 38: EX for lw $t0, 4($t1)
	Slide 39: MEM for lw $t0, 4($t1)
	Slide 40: When we do WB for load
	Slide 41: WB for Load
	Slide 42: Corrected Datapath for Load
	Slide 43: Reading

